Back-rotation during crenulation cleavage development: implications for structural facing and cleavage-forming processes

Scott E. Johnson*
Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia
Received 22 May 1998; accepted 10 August 1998

Abstract

Structural facing can be a useful tool for understanding macroscale structural geometries, particularly where poor outcrop inhibits the mapping of fold closures. However, in some situations facing must be determined with considerable care. In graded metaturbidites, where bedding and a near-parallel foliation have been overprinted by a crenulation cleavage, the earlier foliation in the metapelitic layers can be substantially 'back-rotated' in the hinges of the overprinting crenulation cleavage. Thus, the rotation in the crenulation hinges is opposite to the rotation in the crenulation limbs. When viewed in the metapelitic layers, relative to a bedding surface, back-rotation can cause an apparent reversal in the structural facing (and vergence) on the rotated foliation. To avoid such misinterpretation, structural facing on the earlier foliation should be determined in the metapsammitic layers, where the effects of the overprinting crenulation cleavage are minimal. Because foliations that intersect bedding at a low angle are commonly hard to identify in metapsammitic outcrops, microstructural analysis may be required. The back-rotation process provides important constraints on mechanisms and kinematics of crenulation cleavage development, and may also have important implications for porphyroblast rotation, folding mechanisms and issues of strain compatibility in compositionally interlayered rocks. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In 1957, Shackleton extended the concept of 'facing' from strata to structures. Where a foliation and bedding intersect, the structural facing on the foliation is defined as the direction of younging along the foliation of interest, measured in a direction perpendicular to the foliation/bedding intersection lineation (Fig. 1a). When defined in this way, structural facing can be very useful for determining the positions of fold-hinge lines or crestal traces, particularly where poor outcrop or monotonous stratigraphy inhibits the tracing of rock units around

[^0]folds (Shackleton, 1957; Bell, 1981). If the foliation of interest is axial-surface to folds, structural facing becomes the same as the fold facing. This tool can also be used to determine the positions of early fold axial-surface traces that predate the foliation of interest, as well as later ones that postdate the foliation (Fig. 1b). In areas of poor outcrop, the method outlined in Fig. 1(b) may be the only way to determine the positions of late folds that do not have axial-surface foliations. Finally, combining structural facing information from two or more foliations in an area can aid greatly in clarifying the macroscale structural geometry (Fig. 1b), and can add useful additional information to more conventional geometrical analyses.

Fig. 1. (a) Diagrammatic definition of structural facing on a foliation. (b) Diagram illustrating how structural facing on two axialsurface foliations can be used to find fold traces of each generation, and elucidate the overall macroscale geometry. Facing is shown as either up or down, and so in the case of S_{1} it is not drawn parallel to the foliation.

Although structural facing is a useful tool, and the points outlined here are simple enough, determination of structural facing must be made with considerable care in particular situations. For example, in areas of graded metaturbidites, where bedding and the foliation of interest intersect at a low angle and have been overprinted by a later crenulation cleavage, structural facing can potentially be misinterpreted. This situation occurs in the Cooma Complex, Australia, which provides a good example

Map: $\not-\mathrm{s}_{0}$: younging uncertain $\ngtr \mathrm{s}_{0}$: upward younging $\nLeftarrow \mathrm{s}_{0}$: downward younging $\left[\mathrm{s}_{3}\right.$ Cross-section: f_{0} ! s_{3} Form surface $=s_{0}$

Fig. 2. Map of Slacks Creek area in the Cooma Complex (inset shows location of Cooma) showing strikes and dips of S_{0} and S_{3}, crestal trace of the Slacks Creek Anticline, and cross-section along the line $\mathrm{A}-\mathrm{A}^{\prime}$.
of an area where structural facing must be determined with care.

2. The situation at Cooma

The Cooma Complex is a low-pressure, high-temperature metamorphic complex in the Lachlan Fold Belt of southeastern Australia (Fig. 2), and has been the focus of numerous structural/microstruc-

Fig. 3. Intensely developed, near-vertical S_{3} overprinted by the S_{4} crenulation cleavage. Younging is to the right (west), and the sandy base of a metaturbidite couplet fills the right side of the photograph. S_{3} is marked by small lines in S_{4} crenulation hinges in the metapelitic layer, where it dips in the opposite direction to overturned S_{0}. View looks south. Diameter of coin 2 cm .

Fig. 4. Sketch illustrating mesoscale relationships commonly seen on the overturned limb of the Slacks Creek Anticline. A metapsammitemetapelite couplet grades to the right (west). S_{3} and S_{4} are obvious in the metapelitic portion, but the only foliation in the metapsammitic base (shaded) is apparently bedding-parallel. If the very consistent orientation of S_{3} in the metapelitic portion reflects its original vergence relative to S_{0}, downward structural facing on S_{3} is indicated. The photograph in Fig. 3 illustrates this relationship.

Fig. 5. Outcrop showing graded S_{0} slightly overturned and younging to the right (west). S_{3} in the metapsammitic layer dips to the east less steeply than the overturned S_{0}, and both are overprinted by the gently-dipping S_{4} crenulation cleavage. View looks south. Diameter of coin 2.5 cm .

Fig. 6. Drawing illustrating mesoscale relationships rarely seen on the overturned limb of the Slacks Creek Anticline. A metapsammitemetapelite couplet is shown grading to the right (west). S_{3} and S_{4} are obvious in the metapelitic portion, and, as in Fig. 5, S_{3} is also present in the metapsammitic portion (shaded), where it dips less steeply than S_{0}. These relationships demonstrate that structural facing on S_{3} is upward, and that the dip of S_{3} relative to bedding in the metapelite is misleading.
tural studies (e.g. Hopwood, 1976; Granath, 1980; Vernon, 1988; Johnson et al., 1994; Johnson and Vernon, 1995; see Johnson, 1999 for extensive reference list).

Fig. 2 shows the macroscale structural geometry of part of the Slacks Creek area at Cooma. Event D_{3} of Johnson and Vernon (1995) produced tight, upright to gently overturned, variably-plunging macroscale F_{3} folds that control the macroscale geometry at Cooma (Johnson, in press). Throughout the overturned western limb of the Slacks Creek Anticline, bedding and S_{3} generally intersect at a small angle, and both have been overprinted by the S_{4} crenulation cleavage (Fig. 3). S_{3} and S_{4} are readily visible in the metapelitic tops of the layers, but in the metapsammitic bases S_{4} is poorly developed, and S_{3} generally intersects S_{0} at such a small angle that it cannot be clearly recognized at most outcrops. Therefore, field determinations of structural facing on S_{3} at these locations can only be attempted on the basis of its orientation in the metapelitic layers relative to nearby S_{0} (Fig. 4). Although individual S_{3} surfaces cannot be traced through the S_{4} crenulations in the metapelites, and thus an S_{3} form-surface cannot be determined, the remarkably consistent orientation of S_{3} in the S_{4} crenulation hinges appears to provide a reliable indicator of its orientation relative to S_{0} (e.g. Figs. 3 and 4). On this basis, the structural facing on S_{3} in

Fig. 7. Photomicrograph of sample collected directly below the outcrop shown in Fig. 5, illustrating the relationships shown in Figs. 5 and 6. Graded S_{0} youngs to the right (west). Complete continuity exists between S_{3} in the metapsammite and back-rotated S_{3} in the metapelite. Lines in the central crenulation show the progressive change in S_{3} orientation, which rotated a maximum of approximately 80° through the thin section-scale trace of S_{0}. Note that the porphyroblast long axes and inclusion trails in the metapelitic layer are parallel to the foliation in the crenulation hinges. Vertical thin section looking south. Partially crossed polars; long axis 35 mm .

Figs. 3 and 4 would be interpreted as downward, which, if correct, would require that the rocks were overturned prior to D_{3}. Additionally, vergence on S_{3} in Figs. 3 and 4 would be to the right, or west, on the basis of foliation-bedding intersection angles.

Although this interpretation seemed reasonable on the basis of initial field observations, detailed microstructural work, combined with more careful field observations at key localities, demonstrated that it was incorrect. At several localities on the western limb of the Slacks Creek Anticline, S_{3} in the metapsammites is clearly oblique to S_{0} at the mesoscale (Fig. 5), and the relationship between S_{3} and S_{0} indicates upward structural facing on S_{3}, with F_{3} vergence to the left, or east (Fig. 6). Because the metapsammites have generally not been strongly affected by the S_{4} crenulation cleavage, I consider the S_{3} orientation relative to S_{0} in the metapsammites to be reliable, whereas the orien-

Fig. 8. Diagram showing a three-stage sequence leading to the relationships shown in Fig. 6. This sequence illustrates that back-rotation of S_{3} in the hinge-zones of the S_{4} crenulation cleavage is responsible for the misleading dip of S_{3} in the metapelites relative to S_{0}. Several porphyroblasts are shown in the metapelitic layer, where they back-rotate with the crenulation hinges. Metapsammitic portion of metaturbidite couplet shaded. S_{4} dip increases from (B) to (C) owing to foliation refraction during folding.
tation in the metapelites is unreliable. Where S_{3} in metapsammites is oblique to S_{0}, S_{3} in the adjacent metapelites dips in the opposite direction relative to S_{0} (Fig. 6). This relationship cannot be attributed to refraction of S_{3}, because it would require refraction

Fig. 9. The overprinting relationships shown in Henderson (1997, fig. 4a). Although the situation is similar to that in the Slacks Creek area, important differences are discussed in the text. Metapsammitic portion of metaturbidite couplet shaded.
either: (a) through greater than 90° and through the normal to bedding, or (b) through the bedding surface. Additionally, S_{3} can be traced continuously across metapsammite-metapelite transitions in thin sections (Fig. 7), and so it is demonstrably the same foliation in the two rock-types.

On the basis of microstructural investigations of metapsammite-metapelite transitions, I conclude that rotation of S_{3} in the hinges (or short limbs) of S_{4} crenulations occurred in the opposite direction to rotation of S_{3} in the crenulation long limbs (Fig. 8). This back-rotation has led to apparent S_{3} dips in the metapelites that are opposite to those in the metapsammites that are largely unaffected by S_{4}. Recognition of this process dictated that the geometrical relationships between S_{0} and S_{3} in these rocks be determined only in metapsammites that had not been crenulated by S_{4}. Because such relationships in metapsammitic rocks are commonly difficult to determine, owing to the small angle between S_{3} and S_{0} at most outcrops, structural facing determinations were made at numerous locations from thin sections (e.g. Fig. 7). All samples examined indicated the same relationships as those shown in Fig. 6, demonstrating that structural facing on S_{3} is upward over the entire area, and that F_{3} vergence is consistent with the macroscale geometry defined by folded S_{0} (Fig. 2).

3. Chevron cleavage pattern-an alternative geometry

Structural relationships similar to those in the Slacks Creek area were described in the Slave structural province, Canada, by Henderson (1997). There, an earlier, pervasively-developed foliation $\left(S_{2}\right)$ in graded metaturbidites was also overprinted by a crenulation cleavage $\left(S_{3}\right)$ that is well-developed in the metapelitic portions of the beds, and absent from the metapsammitic bases (Fig. 9). The earlier foliation is also back-rotated in the crenulation hinges, but this foliation and the overprinting crenulation cleavage initially had opposite vergence relative to S_{0}, whereas at Cooma they had the same vergence. Thus, after back-rotation, the earlier foliation in the crenulation hinges has the same vergence relative to S_{0} as it does in the metapsammitic bases (Fig. 9), rather than the opposite as at Cooma (Fig. 6). The earlier foliation in the metapsammites, and overprinting crenulation cleavage in the metapelites, together form the chevron cleavage pattern common in the Northwest Territories of Canada (e.g. Henderson, 1997, and references therein).

4. Discussion and concluding remarks

The process of back-rotation discussed earlier was only apparent because two conditions were met in these rocks: (1) a marked gradient in crenulation cleavage development occurred across layers of different composition; and (2) the crenulated foliation was welldeveloped in all rocks, allowing a comparison of its orientation relative to bedding across the crenulation gradient. Without these conditions, there would be no way to demonstrate the back-rotation of the crenulation hinges. Microstructural work played an essential role in this study.

I am intrigued by the tendency for foliations in crenulation hinges to back-rotate towards orthogonality with the developing crenulation cleavage (e.g. Figs. 3 and 7), even though in many instances the initial overprinting angles between the two are as low as 45° (e.g. Fig. 7), or even lower. This tendency has the following implications; (1) porphyroblasts commonly appear to grow during crenulation-cleavage development. If the crenulation hinges back-rotated, the syn-deformational porphyroblasts in the hinges must also have rotated with the hinges (Figs. 7 and 8), which may account for the near-orthogonal relationships commonly preserved between inclusion trails and the overprinting cleavage; (2) back-rotation of hinges can promote gaping between individual foliation surfaces parallel to the developing cleavage, providing low-pressure
sites for quartz deposition. Thus, at least some of the quartz dissolved from the developing cleavage seams can theoretically be readily redeposited in the hinges. Back-rotating past orthogonality with the cleavage seams would no longer favour this process, which may partly explain the near-orthogonality commonly (but by no means exclusively) observed. (3) back-rotation towards orthogonality can serve to minimize overall shortening perpendicular to the developing cleavage for a given amount of shortening in the cleavage seams. This effect is maximized at the point of orthogonality, and may aid in maintaining strain compatibility across compositional layers.

After orthogonality is reached, deformation must proceed by one or more different processes that progressively shorten the crenulation hinges, and sometimes completely destroy them to form a new pervasive foliation.

Acknowledgements

This work was supported by the Australian Research Council in the form of a Queen Elizabeth II Research Fellowship and Large Grant No. A39700451. I thank Dave Durney, Dave Gray, Vince Morand and Ron Vernon for comments on the information presented in this manuscript, and Sharon Mosher and Brenton Worley for constructive reviews. I thank Mike Williams for many conversations regarding the process and implications of backrotation.

References

Bell, A.M., 1981. Vergence: an evaluation. Journal of Structural Geology 3, 197-202.
Granath, J.W., 1980. Strain, metamorphism, and the development of differentiated crenulation cleavages at Cooma, Australia. Journal of Geology 88, 589-601.
Henderson, J.R., 1997. Development of chevron cleavage pattern and porphyroblast rotation in graded metaturbidites, Slave structural province, Northwest Territories, Canada. Journal of Structural Geology 19, 653-661.
Hopwood, T.P., 1976. Stratigraphy and structural summary of the Cooma metamorphic complex. Journal of the Geological Society of Australia 23, 345-360.
Johnson, S.E., in press. Deformation and possible origins of the Cooma Metamorphic Complex, southeastern Lachlon Fold Belt, New South Wales.
Johnson, S.E., Vernon, R.H., 1995. Stepping stones and pitfalls in the determination of an anticlockwise $P-T-t$-deformation path: the lowP, high- T Cooma Complex, Australia. Journal of Metamorphic Geology 13, 165-183.
Johnson, S.E., Vernon, R.H., Hobbs, B.E., 1994. Deformation and metamorphism of the Cooma Complex, southeastern Australia.

Geological Society of Australia, Specialist Group in Tectonics and Structural Geology Field Guide No. 4, 89 pp.
Shackleton, R.M., 1957. Downward-facing structures of the Highland Border. Quarterly Journal of the Geological Society of London 113, 361-392.

Vernon, R.H., 1988. Sequential growth of cordierite and andalusite porphyroblasts, Cooma Complex, Australia: microstructural evidence of a prograde reaction. Journal of Metamorphic Geology 6, 255-269.

[^0]: * E-mail: scott.johnson@mq.edu.au

